
Performance of Windows Multicore Systems on Threading and MPI

Judy Qiu1, Scott Beason1, Seung-Hee Bae1,2, Saliya Ekanayake1,2, Geoffrey Fox1,2
1Pervasive Technology Institute, 2School of Informatics and Computing

Indiana University, Bloomington IN, 47408 USA
 Email: {xqiu, smbeason, sebae, sekanaya, gcf@indiana.edu}

Abstract—We present performance results on a Windows
cluster with up to 768 cores using MPI and two variants of
threading – CCR and TPL. CCR (Concurrency and
Coordination Runtime) presents a message based interface
while TPL (Task Parallel Library) allows for loops to be
automatically parallelized. MPI is used between the cluster
nodes (up to 32) and either threading or MPI for parallelism
on the 24 cores of each node. We use a simple matrix
multiplication kernel as well as a significant bioinformatics
gene clustering application. We find that the two threading
models offer similar performance with MPI outperforming
both at low levels of parallelism but threading much better
when the grain size (problem size per process) is small. We find
better performance on Intel compared to AMD on comparable
24 core systems. We develop simple models for the
performance of the clustering code.

Multicore, Performance, Threading, MPI, and Windows

I. INTRODUCTION

Multicore technology is still rapidly changing at both the
hardware and software levels and so it is challenging to
understand how to achieve good performance especially with
clusters when one needs to consider both distributed and
shared memory issues. In this paper we look at both MPI and
threading approaches to parallelism for a significant
production datamining code running on a 768 core Windows
cluster. Efficient use of this code requires that one use a
hybrid programming paradigm mixing threading and MPI.
Here we quantify this and compare the threading model CCR
(Concurrency and Coordination Runtime) used for the last 3
years with Microsoft’s new TPL Task Parallel Library.

Section II briefly presents the clustering application used
in this paper while section III summarizes the three
approaches parallelism – CCR, TPL and MPI – used here.
Section IV is the heart of paper and looks at the performance
of the clustering application with the different software
models and as a function of dataset size. We identify the
major sources of parallel overhead of which the most
important is the usual synchronization and communication
overhead. We compare the measured performance with
simple one and two factor models which describe most of the
performance data well. Both CCR and the newer TPL
perform similarly. In section V, we extend study to a matrix
multiplication kernel running on single node Intel and AMD
24 core systems where CCR outperforms TPL. Section VI
has conclusions.

In this paper we mainly use a cluster Tempest which has
32 nodes made up of four Intel Xeon E7450 CPUs at
2.40GHz with 6 cores. Each node has 48 GB node memory
and is connected by 20Gbps Infiniband. In section 5, we
compare with a single AMD machine that is made up of four
AMD Opteron 8356 2.3 GHz chips with 6 cores. This
machine has 16 GB memory. All machines run Microsoft
Window HPC Server 2008 (Service Pack 1) - 64 bit. Note all
software was written in C# and runs in .NET3.5 or .NET4.0
(beta 2) environments.

II. APPLICATIONS

Figure 1. Clustering by Deterministic Annealing for 35339 AluY
Sequences

We have described in earlier publications [1, 2, 4], our
approach to clustering using deterministic annealing. This
was introduced by Rose [5, 6] with Hofmann and Buhmann
[7] providing a key extension to the “pairwise” case where
the points to be clustered do not have known vector
representations but rather all that is known is the
dissimilarities (distances) between each pair of points. We
have substantially improved the published algorithms and
implemented efficiently using both MPI and threading. All
our current published work has used Microsoft’s CCR
threading library [8, 9].

The current paper uses two samples of Alu repeats [10-
12] coming from the Human and Chimpanzee genomes.
Typical result of this analysis is shown in Fig. 1 with several
identified clusters in the AluY family [2]. The algorithm is

814

compute intensive as it is of O(N2) for N sequences and so
we are motivated to seek both improved algorithms [1] and
understand the performance of the current code [13-15].

III. SOFTWARE MODELS

A. CCR (Concurrency and Coordination Runtime)
CCR [8, 9] has been a very reliable tool used in our

group for several years and giving good performance. We
have discussed its syntax and capabilities in previous papers
[4, 13-15]. It offers high performance ports with queues to
support messaging between threads and much of its
sophistication is not needed in this application. As shown in
Fig. 2, there is a non trivial amount of overhead in
implementing a simple parallel loop that is needed 22 times
in our application. This does produce relatively ugly code
and in fact the MPI version of this is much simpler as it at
most requires barrier calls.

MPI and CCR both require the user break up the loops
explicitly to express the “data parallelism”. The shared
memory naturally supported by the threaded model improves
both the readability and performance of those parts of the
algorithm requiring communication in MPI. These are
largely to support linear algebra – especially determination
of leading eigenvalue/vector of a cluster correlation matrix.

Figure. 2 Typical Structure of CCR code used in Clustering code

B. TPL (Task Parallel Library) MPI (Message Passing
Interface)
TPL [16] supports a loop parallelism model familiar from

OpenMP [17]. Note TPL is a component of the Parallel FX
library, the next generation of concurrency support for the
Microsoft .NET Framework which supports additional forms
of parallelism not needed in our application. TPL contains
sophisticated algorithms for dynamic work distribution and
automatically adapts to the workload and particular machine
so that the code should run efficiently on any machine
whatever its core count. Note TPL involves language
changes (unlike CCR which is a runtime library) and so
implies that code only runs on Windows.

In Fig. 3, we give the pseudocode for a typical use of
TPL in our application. It is clearly simpler than the CCR

syntax in Fig. 2 but does not help us maintain an OS
independent source as it extends language in an idiosyncratic
fashion. We note that complete clustering code had 22
separate “Parallel For” invocations.

 Figure 3. Typical Structure of TPL code used in Clustering code

C. MPI (Message Passing Interface)
Our codes are implemented to use MPI to support the

concurrency across nodes and in addition the threading
models described above. The inter-node MPI implementation
trivially can support parallelism within the node and that is
used in the later studies. In sense, MPI is the “simplest”
intra-node paradigm as it re-uses code that must be present
anyway. If one only needs intra-node parallelism, then MPI
would be more complex to code than the shared memory
threading models CCR and TPL.

We have discussed elsewhere how extensions of
MapReduce (i-Mapreduce) [1] [3] can be used to replace
MPI but that is not the focus here. i-MapReduce has a more
flexible communication model than MPI and that will lead to
poorer performance.

IV. PERFORMANCE OF CLUSTERING CODE ON TEMPEST
CLUSTER

A. CCR (Concurrency and Coordination Runtime)
In Fig. 4, we show typical execution time measurements

with the parallelism between nodes implemented using MPI
and that internal to node implemented with either threading
or MPI. One sees approximate equality in performance at
low parallelism but that threading is much faster on the
extreme case on left – 24 way internal parallelism on 32
nodes. We will explore this effect in more detail below. Also
note here that TPL is a little faster than CCR even in case of
internal MPI when there is only one thread per process. We
convert execution time into an efficiency or an overhead f
where

 = S(p)/p or (prefT(pref))/(pT(p)) (1)

 f = 1/ -1 = pT(p)/ (prefT(pref)) –1 (2)

where T(p) is execution time on p processors and S(p) is
speedup. Normally the reference process count is pref = 1 but
we will sometimes use a larger value. Efficiency is usually
between 0 and 1 but the overhead is unbounded and so can
confuse plots. However f is linear in overheads as it is linear
in execution time and so it can be simpler to model as we
see below. Note that we label parallelism as tXmXn where

p = t m n (3)

ParallelOptions parallelOptions = new ParallelOptions();

parallelOptions.MaxDegreeOfParallelism = threadCount;

Parallel.For(0, dataBlockCount, parallelOptions, (dataBlockIndex) =>
{

 // do work
});

CountdownLatch latch = CountdownLatch(threadCount);
Port<int> port = new Port<int>();

Arbiter.Activate(queue, Arbiter.Receive(true, port, delegate(int
dataBlockIndex)
{

 DataBlock dataBlock = _dataBlocks[MPIRank][dataBlockIndex];
 // do work
 latch.Signal()

}));

for (int dataBlockIndex = 0; dataBlockIndex < dataBlockCount;
dataBlockIndex++)
{
 port.Post(dataBlockIndex);
}

latch.Wait();

815

Here each node has t threads or m MPI internal processes
and the run involves n nodes. In most of data in this section
either t or m is one i.e. we use pure MPI or pure threading in
a node.

B. Threading Internal to Node
In Fig. 5, we show a set of runs with pure threading in each
node with different choices for thread count t and node
count n. The overhead clearly increases as expected as one
increases parallelism reaching (for TPL) 0.72 for a 768 core
run. This corresponds to an efficiency of 58%. However the
figure also shows a surprising increase at low parallelism
values n < 8. This is a reproducible effect over several
applications and corresponds to poor Windows performance
where processes have large memory. The effect is shown in
more detail in a sample from an earlier paper with Fig. 4
showing the overhead for many cases of low parallelism
counts. This figure shows that here MPI internal (or
external) to the node outperforms threading as it reduces the
process memory size. We note that a one factor model that
only keeps the dependence on total parallelism gives similar
quality fits to that with two factors – this is to be expected if
one analyzes the natural forms of overhead. We illustrate
this in Fig. 8 which compares one and two factor fits for
another AluY sample chosen as it was homogeneous and
could therefore be used to test data set size dependence of

the performance. The one factor fit just uses p while the two
factor fit uses p and n. The two fits are indistinguishable and
also simultaneously describe three dataset sizes with 12.5K,
25K and 50K points. Precisely we used a factor that was
Parallelism p/(Data set size) that is precisely the inverse of
grain size.

Typical overheads in parallel computing are proportional
to a ratio of communication and computation times. These
involve primitive times multiplied by the complexity of the
calculation divided by the computation. Pairwise Clustering
is an O(N2) algorithm (where N is number of points) for
which the complexity is just proportional to the inverse of
the grain size (number of points in each thread or process).
This leads to the expectation that the overhead f is linear in
the parallelism measure p. Here we adopt a
phenomenological two-factor model

f = a1 x1 + a2 x2 (4)

where we take various choices for x1 and x2 and perform a
simple one or two parameter least squares fit to find a1 and
a2. We show the results of this analysis in Fig. 5 for the
choices p and node count n as the factors. This is performed
separately for the CCR and TPL cases. Note the model
describes the data quite well except for the case of low
parallelism n < 8 where we had already suggested that the
overhead was coming from a totally different effect (large

0

1000000

2000000

3000000

4000000

5000000

6000000

p=32
n=16

p=64
n=32

p=64
n=16

p=128
n=32

p=128
n=16

p=256
n=32

p=256
n=16

p=512
n=32

p=768
n=32

D
u

ra
ti

o
n

 (m
s) TPL -MPI

TPL - Threaded

CCR - MPI

CCR - Threaded

Clustering by Deterministic Annealing for ALU 35339
(CCR vs. TPL; Threading vs. MPI)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8x
1x

2

2x
1x

4

4x
1x

4

8x
1x

4

16
x1

x4

24
x1

x4

2x
1x

8

4x
1x

8

8x
1x

8

16
x1

x8

24
x1

x8

2x
1x

16

4x
1x

16

8x
1x

16

16
x1

x1
6

2x
1x

24

4x
1x

24

8x
1x

24

16
x1

x2
4

24
x1

x2
4

2x
1x

32

4x
1x

32

8x
1x

32

16
x1

x3
2

24
x1

x3
2

Pa
ra

lle
l O

ve
rh

ea
d

Parallel Patterns (Threads/Processes/Nodes)

Threading on CCR or TPL Runtime
(Clustering by Deterministic Annealing for ALU 35339 data points)

CCR TPL

Figure 4. Execution Time of Clustering Code for selected parallelism
p and node counts n. Shown are CCR and TPL internal threading as
well as intra-node MPI implemented in these two frameworks

Figure 5. Parallel Overhead for 35399 AluY sequence clustering for
cases of pure threading in the node

Figure 6. Parallel Overhead f as a function of pattern tXmXn for a sample of 30,000 Metagenomics sequences. [2] (Selected on small parallel counts p 64)

Parallel Overhead f

816

process memory) than the usual communication and
synchronization overheads that (4) attempts to model.

We note that a one factor model that only keeps the
dependence on total parallelism gives similar quality fits to
that with two factors – this is to be expected if one analyzes
the natural forms of overhead. We illustrate this in Fig. 8
which compares one and two factor fits for another AluY
sample chosen as it was homogeneous and could therefore be

used to test data set size dependence of the performance. The
one factor fit just uses p while the two factor fit uses p and n.
The two fits are indistinguishable and also simultaneously
describe three dataset sizes with 12.5K, 25K and 50K points.
Precisely we used a factor that was Parallelism p/(Data set
size) that is the inverse of grain size. We note that TPL is
usually faster than CCR although the difference is often
small as seen in Fig. 9.

0.02

0.2

2

20

24
x1

x3
2

16
x1

x3
2

8x
1x

32

24
x1

x1
6

16
x1

x1
6

8x
1x

16

24
x1

x8

16
x1

x8

8x
1x

8

1x
1x

8

24
x1

x3
2

16
x1

x3
2

8x
1x

32

24
x1

x1
6

16
x1

x1
6

8x
1x

16

24
x1

x8

16
x1

x8

8x
1x

8

1x
1x

8

24
x1

x3
2

16
x1

x3
2

8x
1x

32

24
x1

x1
6

16
x1

x1
6

8x
1x

16

24
x1

x8

16
x1

x8

8x
1x

8

Pa
ra

lle
l O

ve
rh

ea
d

Parallel Patterns (Threads/Processes/Nodes)

MPI v Models Alu 12.5K to 50K

MPI
MPI Fit v Parallelism P
MPI v P and P*P12.5K Data Size

25K Data Size

50K Data Size

Pa
ra

lle
l O

ve
rh

ea
d

Parallel Patterns (Threads/Processes/Nodes)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

2x
1x

4

2x
1x

8

2x
1x

16

4x
1x

4

8x
1x

4

8x
1x

2

4x
1x

8

4x
1x

16

2x
1x

24

8x
1x

8

2x
1x

32

16
x1

x4

4x
1x

24

4x
1x

32

8x
1x

16

16
x1

x8

8x
1x

24

24
x1

x4

8x
1x

32

16
x1

x1
6

24
x1

x8

16
x1

x2
4

16
x1

x3
2

24
x1

x1
6

24
x1

x2
4

24
x1

x3
2

Difference in Overhead for Threading
Clustering of ALU

Pa
ra

lle
l O

ve
rh

ea
d

Parallel Patterns (Threads/Processes/Nodes)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1x
2x

4

1x
2x

8

1x
2x

16

1x
4x

4

1x
8x

4

1x
8x

2

1x
4x

8

1x
4x

16

1x
2x

24

1x
8x

8

1x
2x

32

1x
16

x4

1x
4x

24

1x
4x

32

1x
8x

16

1x
16

x8

1x
8x

24

1x
24

x4

1x
8x

32

1x
16

x1
6

1x
24

x8

1x
16

x2
4

1x
16

x3
2

1x
24

x1
6

1x
24

x2
4

1x
24

x3
2

Difference in Overhead for MPI
Clustering of ALU

Figure 9. Parallel Overhead difference CCR minus TPL for threading
internal to node with Clustering by Deterministic Annealing for 35339
AluY Sequences

Figure 11. Parallel Overhead f as a function of pattern tXmXn for three
samples of respectively 12,500 25.000 and 50,000 AluY sequences in
the case t=1 of MPI internal to node. We show for each pattern, the
CCR measurement followed by the single factor and two factor model.

Figure 12. Parallel Overhead difference CCR minus TPL for MPI
internal to node with Clustering by Deterministic Annealing for
35339 AluY Sequences

Figure 7. The data of Fig. 5 compared with a simple model described in text
for MPI and threading. For each pattern, we show in order the model CCR
prediction, the measured CCR, the model TPL prediction and finally the
measured TPL

Figure 8. Parallel Overhead f as a function of pattern tXmXn for three
samples of respectively 12,500 25.000 and 50,000 AluY sequences in
the case m=1 of threading internal to node. We show for each pattern,
the CCR measurement followed by the two factor and single factor
model.

Figure 10. Parallel Overhead for 35399 AluY sequence clustering for
cases of pure MPI internal to the node. For each pattern, we show in
order the measured TPL, the measured CCR, the single factor model
CCR prediction and finally the two factor model CCR prediction.

0

0.5

1

1.5

2

2.5

24
x1

x3
2

16
x1

x3
2

8x
1x

32

24
x1

x1
6

16
x1

x1
6

8x
1x

16

24
x1

x8

16
x1

x8

8x
1x

8

1x
1x

8

24
x1

x3
2

16
x1

x3
2

8x
1x

32

24
x1

x1
6

16
x1

x1
6

8x
1x

16

24
x1

x8

16
x1

x8

8x
1x

8

1x
1x

8

24
x1

x3
2

16
x1

x3
2

8x
1x

32

24
x1

x1
6

16
x1

x1
6

8x
1x

16

24
x1

x8

16
x1

x8

8x
1x

8

Pa
ra

lle
l O

ve
rh

ea
d

Parallel Patterns (Threads/Processes/Nodes)

CCR v Model Alu 12.5K to 50K

CCR

CCR Fit v Parallelism P AND Nodes N

CCR v P

12.5K Data Size 25K Data Size 50K Data Size

817

C. MPI Internal to Node
We now look at the analogous runs to the previous

section but with pure MPI and not pure threading in each
node. We still get results for both CCR and TPL as our code
bases are implemented in the threading frameworks and can
get some overheads even though the thread count is one in
all cases. Fig. 10 plots the basic overhead measurements plus
two models that we only apply to CCR case. One model has
a single factor x1 as the parallelism p and the second model
has x1 as the parallelism p and the second model has x1 as p
and x2 as p2. Again the models are approximately correct but
now for all patterns as we have internal MPI parallelism, we

do not have the large process memory effect at low
parallelism values.

The simple linear fits are less good than for threading
case. This is particularly clear in Fig. 11 which analyzes the
dataset size dependence for MPI intra-node parallelism for
the 3 AluY samples. Now the fits are significantly poorer
than in Fig. 8. This is not surprising as the large size of the
overhead makes it hard to justify a linear (or even quadratic)
model.

In Fig. 12, we show the small overhead increases for
CCR compared to TPL in the case when MPI is used internal
to a node.

0.001

0.01

0.1

1

10

100

1000

64 256 1024 4096Tim
e (

se
c)

Matrix Size

Execution Time of Matrix Multiplication Using TPL
on Intel and AMD Machines

Intel_TPL_4Th
Intel_TPL_8Th
Intel_TPL_16Th
Intel_TPL_24Th
AMD_TPL_4Th
AMD_TPL_8Th
AMD_TPL_16Th
AMD_TPL_24Th

0.001

0.01

0.1

1

10

100

1000

64 128 256 512 1024 2048 4096

Tim
e (

se
c)

Matrix Size

Execution Time of Matrix Multiplication Using CCR
on Intel or AMD Runtime

Intel_CCR_4Th

Intel_CCR_8Th

Intel_CCR_16Th

Intel_CCR_24Th

AMD_CCR_4Th

AMD_CCR_8Th

AMD_CCR_16Th

AMD_CCR_24Th

0

0.2

0.4

0.6

0.8

1

1.2

64 256 1024 4096

Pa
ra

lle
l E

ffi
ce

inc
y

Matrix Size

Parallel Efficiency for CCR or TPL
(Intel 24 Core)

CCR_4Th
TPL_4Th
CCR_8Th
TPL_8Th
CCR_16Th
TPL_16Th
CCR_24Th
TPL_24Th

0

0.2

0.4

0.6

0.8

1

1.2

64 256 1024 4096

Pa
ra

lle
l E

ffi
cie

nc
y

Matrix Size

Parallel Efficiency for CCR or TPL
(AMD24 Core)

CCR_4Th
TPL_4Th
CCR_8Th
TPL_8Th
CCR_16Th
TPL_16Th
CCR_24Th
TPL_24Th

0

0.2

0.4

0.6

0.8

1

1.2

64 256 1024 4096

Pa
ra

lle
l E

ffi
cie

nc
y

Matrix Size

Parallel Efficiency on Intel or AMD Machine
(Matrix Multiplication Using TPL)

Intel_TPL_4Th

Intel_TPL_8Th

Intel_TPL_16Th

Intel_TPL_24Th

AMD_TPL_4Th

AMD_TPL_8Th

AMD_TPL_16Th

AMD_TPL_24Th 0

0.2

0.4

0.6

0.8

1

1.2

64 256 1024 4096

Pa
ra

lle
l E

ffi
cie

nc
y

Matrix Size

Parallel Efficiency on Intel or AMD Machine
(Matrix Multiplication Using CCR)

Intel_CCR_4Th

Intel_CCR_8Th

Intel_CCR_16Th

Intel_CCR_24Th

AMD_CCR_4Th

AMD_CCR_8Th

AMD_CCR_16Th

AMD_CCR_24Th

Figure 13. Execution time of TPL for matrix multiplication kernel on
single node 24 core Intel and AMD machines for the cases of 4, 8, 16 and
24 concurrent threads.

Figure14. Execution time of CCR for matrix multiplication kernel on
single node 24 core Intel and AMD machines for the cases of 4, 8, 16 and
24 concurrent threads.

Figure 15. Parallel efficiency (1) comparing CCR and TPL on an Intel 24
core node with 4, 8, 16 and 24 concurrent threads.

Figure 16. Parallel efficiency (1) comparing CCR and TPL on an AMD
24 core node with 4, 8, 16 and 24 concurrent threads

Figure 17. Parallel efficiency (1) comparing AMD and Intel 24 core
nodes with 4, 8, 16 and 24 concurrent threads using TPL framework

Figure 18. Parallel efficiency (1) comparing AMD and Intel 24 core
nodes with 4, 8, 16 and 24 concurrent threads using CCR framework

818

V. MATRIX MULTIPLICATION

A. Comparison of CCR and TPL
In section IV, we looked at a relatively complex “real”

application and here we examine the comparison between
CCR and TPL on a simple kernel matrix multiplication. This
has been extensively studied under MPI and so here we just
compare the two threading environments CCR and TPL on a
single 24 core node. We compare the Intel and AMD models
detailed in section 1 and consider four cases – 4 8 16 or 24
threads. The raw results in figures 13 and 14 show that the
Intel machine slightly outperforms the AMD one.

We now use (1) to calculate efficiencies and discuss them
in Figs. 15 and 16 in a way that allows comparison of CCR
and TPL with Fig. 15 comparing them on the Intel and Fig.
16 the AMD node. Unlike section IV, we see that CCR
typically outperforms TPL although the effect is often small.
Further TPL outperforms CCR on the AMD machine for
smaller thread counts. We also see smooth results except for
the 24 core case where efficiencies show a strange shape that
we need to investigate further.

If we compare the code structure for the applications of
sections IV and V, we see matrix multiplication is very
structured and totally load balanced. Thus the dynamic
tasking of TPL has no advantages over the static user
generated decomposition used in CCR. However the
clustering algorithm has some inhomogeneity and may be
benefiting from the dynamic TPL features.

B. Comparison of Intel and AMD
Figs. 17 and 18 compare for TPL and CCR respectively

the efficiencies for Intel and AMD that were shown on
separate graphs in figures 15 and 16. We see that the Intel
efficiencies are strikingly better than those on AMD machine
achieving efficiencies near 1 at lower matrix sizes (by
approximately a factor of 4).

VI. CONCLUSIONS

We have examined parallel programming tools
supporting Microsoft Windows environment for both
distributed and shared memory. We show that the new TPL
Task Parallel Library produces simpler code and slightly
better performance than the older CCR runtime. Good
performance on the cluster of 24 core nodes requires use of a
hybrid programming paradigm using MPI between nodes
and threading internal to the node. We are able to describe
both MPI and threading overheads with a simple single
factor model with a linear dependence on the inverse grain
size (number of data points in each thread). This breaks
down when the overhead gets very large and also at small
levels of parallelism when Windows performs poorly with
large memory processes. In future work, we will extend our
analysis to other applications including those that are
memory bandwidth limited. In future work, we will extend
our analysis to other applications including those that are
memory bandwidth limited.

ACKNOWLEDGMENT

We would like to thank Microsoft for their collaboration
and support. Tony Hey, George Chrysanthakopoulos and
Henrik Frystyk Nielsen played key roles in providing
technical support. We appreciate our collaborators from IU
School of Informatics and Computing. Haixu Tang and Mina
Rho gave us important feedback on Alu and Metagenomics
data.

REFERENCES
[1] Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl Choi,

Seung-Hee Bae, Yang Ruan, Saliya Ekanayake, Stephen Wu, Scott
Beason, Geoffrey Fox, Mina Rho, Haixu Tang, “Data Intensive
Computing for Bioinformatics”, submitted as a book chapter for book
“Data Intensive Distributed Computing”, IGI Publishers, 2010.

[2] Fox, G., Qiu, X., Beason, S., Choi, J. Y., Rho, M., Tang, H., et al.
(2009). "Biomedical Case Studies in Data Intensive Computing," in
Proceedings of The 1st International Conference on Cloud Computing
(CloudCom 2009). Springer Verlag.

[3] i-MapReduce Home Page. http://www.iterativemapreduce.org.
[4] G. Fox, S.H. Bae, J. Ekanayake, X. Qiu, H. Yuan Parallel Data

Mining from Multicore to Cloudy Grids Proceedings of HPC 2008
High Performance Computing and Grids workshop. Cetraro, Italy.
July 3 2008.

[5] K. Rose, “Deterministic Annealing for Clustering, Compression,
Classification, Regression, and Related Optimization Problems”,
Proceedings of the IEEE, vol. 80, pp. 2210-2239, November 1998.

[6] Kenneth Rose, Eitan Gurewitz, and Geoffrey C. Fox “Statistical
mechanics and phase transitions in clustering” Phys. Rev. Lett. 65,
945 - 948 (1990)

[7] T Hofmann, JM Buhmann “Pairwise data clustering by deterministic
annealing”, IEEE Transactions on Pattern Analysis and Machine
Intelligence 19, pp1-13 1997

[8] Microsoft Robotics Studio is a Windows-based environment that
includes end-to-end Robotics Development Platform, lightweight
service-oriented runtime, and a scalable and extensible platform. For
details, see http://msdn.microsoft.com/robotics/

[9] Georgio Chrysanthakopoulos and Satnam Singh “An Asynchronous
Messaging Library for C#”, Synchronization and Concurrency in
Object-Oriented Languages (SCOOL) at OOPSLA October 2005
Workshop, San Diego, CA.

[10] M.A. Batzer, P.L. Deininger, 2002. "Alu Repeats And Human
Genomic Diversity." Nature Reviews Genetics 3, no. 5: 370-379.
2002

[11] A. F. A. Smit, R. Hubley, P. Green, 2004. Repeatmasker.
http://www.repeatmasker.org

[12] J. Jurka, 2000. Repbase Update: a database and an electronic journal
of repetitive elements. Trends Genet. 9:418-420 (2000).

[13] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae,
George Chrysanthakopoulos, Henrik Frystyk Nielsen “Parallel
Clustering and Dimensional Scaling on Multicore Systems” Invited
talk at the 2008 High Performance Computing & Simulation
Conference (HPCS 2008) Nicosia, Cyprus June 3 - 6, 2008.

[14] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae,
George Chrysanthakopoulos, Henrik Frystyk Nielsen “Performance
of Multicore Systems on Parallel Data Clustering with Deterministic
Annealing” ICCS 2008 Kraków, Poland; June 23-25, 2008. Springer
Lecture Notes in Computer Science Volume 5101, pages 407-416,
2008. DOI: http://dx.doi.org/10.1007/978-3-540-69384-0_46

[15] Xiaohong Qiu , Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae,
George Chrysanthakopoulos, Henrik Frystyk Nielsen “Parallel Data
Mining on Multicore Clusters” 7th International Conference on Grid
and Cooperative Computing GCC2008 Shenzhen China October 24-
26 2008 .

[16] Daan Leijen and Judd Hall, “Optimize Managed Code For Multi-Core
Machines” http://msdn.microsoft.com/en-us/magazine/cc163340.aspx

[17] The OpenMP parallel programming API http://openmp.org/wp/

819

